Non-invasive Electirical Stimulation for the Cenifed cissd Peripheral Nervous Systiess.

Adam Williamson

Senior Research Team Leader
International Clinical Research Center (ICRCC),
St. Anne's University Hospital and Faculty of
Medicine, Masaryk Universitiy,
Brno, Czech Republic

ICRC

Outline

- Temporal Interference (TI): Epilepsy as a model
$>$ Preliminary work in rodents and scaling TI to humans
> Clinical Temporal Interference
\square Tremor and Parkinson's disease
- Clinical TI of Peripheral nerves
> Hypoglossal nerve
$>$ Vagus Nerve
- Conclusions

The Problem

State-of-the-Art Clinical Neuroscience: deep brain implants for seizure identification and control

State-of-the-Art Clinical Neuroscience: deep brain implants for seizure identification and control

Complete Non-invasive Deep Brain
 Stimulation in Epilepsy

Temporal Interference (TI) Stimulation

Preliminary Results: Efficacy

B Excitatory Stimulation

50 Hz

No standard evoked

Classic Intracranial
$\mathrm{f}=50 \mathrm{~Hz}$

Preliminary Results: Efficacy

B Excitatory Stimulation

50 Hz

- No standard evoked

$$
\begin{gathered}
\text { Classic Intracranial } \\
\qquad f=130 \mathrm{~Hz}
\end{gathered}
$$

Standard Transcranial

C Inhibitory Stimulation (HFS)

Preliminary Results: Efficacy

B Excitatory Stimulation

SEEG $\begin{array}{lllllllllllllllll}15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}$

Standard Transcranial

Outline

Temporal Interference (TI): Epilepsy as a model
Preliminary work in rodents and scaling TI to humans
Clinical Temporal Interference

- Tremor and Parkinson's disease
- Clinical TI of Peripheral nerves
$>$ Hypoglossal nerve
$>$ Vagus Nerve
- Conclusions

Temporal Interference Stimulation (TIS) - principle

- Subject specific modelling of e-fields and electrode positions

Temporal Interference Stimulation (TIS) of subthalamic nucleus (STN)

Pilot measurement - 1st patient

Parkinson's disease patient

- male, 64 years, right-handed
- Disease duration 14 years, dominant side - right
- With freezings, LED $=1385$, UPDRS $=41$
- Indicated to STN-DBS, Medtronic Percept IPG, Directional Leads B33005
- Externalized leads, LFP recording, medication OFF state

Lead localization

Orange - motor, blue - associative, yellow - limbic part of STN

Temporal Interference Stimulation (TIS)

- Two stimulation pairs on scalp, high frequency carriers
- $\mathrm{f} 1=9000 \mathrm{~Hz}, \mathrm{f} 2=9130 \mathrm{~Hz}, \Delta \mathrm{f}=130 \mathrm{~Hz}$
- Stimulation target: position of L1 contact
- LFP recording from externalized leads, $\mathrm{fs}=25 \mathrm{kHz}, \mathrm{Cz}$ scalp reference, recalculated to bipolar LOL1, L1L2, L2L3 (ROR1, R1R2, R2R3)

Note that magnitude of interference artifact differs across bipolar contacts on lead. It means we are able to focus the stimulation also in subcortical regions.

LFP recording, beta power analysis

- $\quad \mathrm{fs}=25 \mathrm{kHz}, \mathrm{Cz}$ scalp reference, recalculated to bipolar
- analysis of LOL3 signal with focus on beta peak power

Comparison of oscillatory components of power spectrum between baseline, conventional DBS stimulation and non-invasive temporal interference stimulation

- Baseline resting state, 2 minutes, OFF medication
- Rest after DBS, 2 mins of recording immediately after 3 mins of stimulation of L1L2, 130Hz, 90us, 2V
- Rest after TIS, 2 mins of recording immediately after 3 mins of stimulation targeted L1, 130 Hz

Note that beta power peak at 26.5 Hz is the highest in baseline condition and falls after DBS or TIS stimulation - evaluated after-effect of stimulation. Between DBS and TIS session was approx. 30 minutes pause.

Temporal Interference Stimulation (TIS) of subthalamic nucleus (STN)
Pilot measurement - 2nd patient

- Parkinson's disease patient
- male, 53 years, right-handed
- Dominant side - left
- Indicated to STN-DBS, Abbott Infinity IPG, Directional Leads 6172
- Externalized leads, LFP recording, medication OFF state

Lead localization

Orange - motor, blue - associative, yellow - limbic part of STN

Temporal Interference Stimulation (TIS)

- Two stimulation pairs on scalp, high frequency carriers
- $\mathrm{f} 1=9000 \mathrm{~Hz}, \mathrm{f} 2=9130 \mathrm{~Hz}, \Delta \mathrm{f}=130 \mathrm{~Hz}$
- Stimulation target: position of R1 contact
- LFP recording from externalized leads, fs $=25 \mathrm{kHz}, \mathrm{Cz}$ scalp reference, recalculated to bipolar LOL1, L1L2, L2L3 (ROR1, R1R2, R2R3)

Note: Unfortunately, no clear difference in envelope amplitude between bipolar contacts

LFP recording, beta power analysis

- $\quad \mathrm{fs}=25 \mathrm{kHz}, \mathrm{Cz}$ scalp reference, recalculated to bipolar
- analysis of R1R2 signal with focus on beta peak power

Comparison of oscillatory components of power spectrum between baseline, noninvasive temporal interference stimulation and conventional DBS stimulation

- Baseline resting state, 2 minutes, OFF medication
- Rest after TIS, 2 mins of recording immediately after 3 mins of stimulation targeted R1, 130 Hz
- Rest after DBS, 2 mins of recording immediately after 3 mins of stimulation of R1R2,130Hz, $90 \mathrm{us}, 2 \mathrm{~V}$

Note that beta power peak is the highest in baseline condition and falls after TIS and DBS stimulation - evaluated after-effect of stimulation. Between TIS and DBS session was approx. 20 minutes pause.

Outline

Temporal Interference (TI): Epilepsy as a model
Preliminary work in rodents and scaling TI to humans
Clinical Temporal Interference
[1] Tremor and Parkinson's disease

- Clinical TI of Peripheral nerves
$>$ Hypoglossal nerve
$>$ Vagus Nerve
- Conclusions

Clinical Temporal Interference

Hamdi et al., Operative Neurosurgery, 18, 5, 487-495 (2020)

Vagus Nerve Phrenic Nerve Hypoglossal Nerve
implantable stimulator

Clinical Temporal Interference

Hamdi et al., Operative Neurosurgery, 18, 5, 487-495 (2020)

transcutaneous $\mathbf{T I}$

Vagus Nerve Phrenic Nerve Hypoglossal Nerve
implantable stimulator

- Normal airflow with no pathological obstruction due to tongue collapse
- Hypoglossal nerve is responsible for tongue tonus

Healthy participant

- For the 1 Billion people with obstructive sleep apnea (OSA), CPAP is the standard of care

Loud, Uncomfortable, Infection Risk, Massive Recalls, Poor Compliance

- Hypoglossal nerve stimulation is the standard surgical treatment for OSA

- Non-invasive stimulation is challenging but would avoid surgical procedure and tongue collapse during the night for OSA patients

1s

- With no stimulation, no tongue tonus and protrusion will be induced
- During an OSA event, the direct stimulation of the hypoglossal nerve will prevent tongue collapse

- Unilateral nerve stimulation only induces a partial lateral tongue protrusion
- The stimulation amplitude needed to induce a tongue tonus with unilateral TI is high and induce tingling on the skin

- Bilateral nerve stimulation induces a complete central tongue protrusion
- Diminution of stimulation amplitude of about 40%, reducing tingling sensation for a same stimulation output

- Crossed TI design for optimal hypoglossal nerve targeting
- High-frequency carriers to reduce tingling sensation on the skin when applying the bTI stimulation
- Bilateral TI with both hypoglossal nerve stimulation at $\Delta f=50 \mathrm{~Hz}$

bTI $=50 \mathrm{~Hz}, 0.5 \mathrm{~s}$ ON $/ 2 \mathrm{~s}$ OFF
- O_{2} saturation is a direct readout of apneas and hypopneas
- Apnea Hypopnea Index (AHI) is calculated overnight and a low AHI is correlated with a good sleep

Overnight polysomnogram

- bTI stimulation efficiently decreases the number of apneas during the night and reduces overnight AHI ($\sim 60 \%$ reduction in women)
- High sex dependency, men hypoglossal nerves are more difficult to depolarize using electrical stimulation

- Device downsizing

- FDA designation "Breakthrough Device"

The Center for Devices and Radiological Health (CDRH) of the Food and Drug Administration (FDA) has received the above submission requesting designation as a Breakthrough Device. The proposed indications for use includes "The treatment of adult patients with a BMI<35 with moderate to severe OSA (AHI 15-50) who fail or do not tolerate PAP/oral appliances.." We are pleased to inform you that your device and proposed indication for use meet the criteria and have been granted designation as a Breakthrough Device. Please refer to the FDA guidance document entitled "Breakthrough Devices Program", for more information regarding the program, available at https://www.fda.gov/media/108135/download.

We recommend you review the FDA guidance document for the Breakthrough Devices Program referenced above for the available mechanisms for obtaining feedback from the Agency on device development for designated breakthrough devices. When submitting any new requests, please reference Q230334. Any new submission should be provided as an eCopy, it should include the FDA reference number for this submission, and should be submitted to the following address:

Of the 760 devices given Breakthrough Designation since the program started in 2015, only 7 have been under the ENT category and 0 for Sleep.

Outline

Temporal Interference (TI): Epilepsy as a model
Preliminary work in rodents and scaling TI to humans
Clinical Temporal Interference
[] Tremor and Parkinson's disease

- Clinical TI of Peripheral nerves

Hypoglossal nerve
$>$ Vagus Nerve

- Conclusions
- Vagus nerve

Vagus nerve stimulation (VNS) is an alternative treatment in pharmacoresistant epilepsy.

implantable VNS

- Vagus nerve

Vagus nerve stimulation (VNS) is an alternative treatment in pharmacoresistant epilepsy.

implantable VNS

gammaCore
Reset. Restore. Relieve. ${ }^{\text {™ }}$
transcutaneous VNS

- Vagus nerve

Vagus nerve stimulation (VNS) is an alternative treatment in pharmacoresistant epilepsy.

gammaCore
Reset. Restore. Relieve. ${ }^{\text {TM }}$
transcutaneous VNS
transcutaneous TI VNS

Hamdi et al., Operative Neurosurgery, 18, 5, 487-495 (2020)

transcutaneous TI VNS

implantable VNS

Hamdi et al., Operative Neurosurgery, 18, 5, 487-495 (2020)

Arrangements of electrodes are placed on the skin above the vagus nerve and implant

Battery replacement

Hamdi et al., Operative Neurosurgery, 18, 5, 487-495 (2020)

Arrangements of electrodes are placed on the skin above the vagus nerve and implant

Battery replacement

Hamdi et al., Operative Neurosurgery, 18, 5, 487-495 (2020)

Arrangements of electrodes are placed on the skin above the vagus nerve and implant

Battery replacement

Connections from electrodes on the vagus to our recording equipment...

Connections from electrodes on the skin to our TI and transcutaneous stimulation...

Battery replacement

Arrangements of electrodes are placed on the skin above the vagus nerve and implant

New stimulator is replaced when we finish

- Vagus nerve

SETPOINT ${ }^{\circ}$

MEDICAL

Microregulator

- Vagus nerve

SETPOINT ${ }^{\circ}$

MEDICAL

MicroRegulator

Outline

Temporal Interference (TI): Epilepsy as a model
Preliminary work in rodents and scaling TI to humans
Clinical Temporal Interference
Tremor and Parkinson's disease
Clinical TI of Peripheral nerves
Hypoglossal nerve
Vagus Nerve

- Conclusions
 implants for seizure identification and control

Complete Non-invasive Deep Brain
 Stimulation in Epilepsy

Team

Funding

Adam
WILLIAMSON

Dr. Mary Donahue

LINKÖPING UNIVERSITY

Dr. Dong Byun

PhD Students

Collaborators

UNIVERSITY OF
WISCONSIN

M	A	D	I	S	O	N

EMORY

UNIVERSITY OF CALIFORNIA

Imperial College London

Recording site
Depth

$\underbrace{2 \times 10^{9}}_{0.2}$坔

 ${ }_{20}^{2}$

mumbl
Epileptic spike

Patient 1
n.s (0.65)
 ${ }^{* * *}(0.02)$

Preliminary Results: Focality

Standard TI
A) TI, 2 waves $=1$ envelope...

A) TI, $\mathbf{2}$ waves $=1$ envelope...

B) mTI , but two envelopes $=1$ large envelope

A) TI, $\mathbf{2}$ waves $=1$ envelope...

B) mTI , but two envelopes = 1 large envelope

large envelope reduced to original envelope = increase in focality

A) TI, $\mathbf{2}$ waves $=1$ envelope...

B) mTI , but two envelopes $=1$ large envelope

large envelope reduced to original envelope = increase in focality

Preliminary Results: Focality

mTI
(multiple envelopes)

Standard TI

Preliminary Results: Focality

Patent EP 21306447 - DEEP BRAIN STIMULATION SYSTEM

Focality in NHPs

$$
\mathrm{Mm}
$$

Target: superior colliculus

Target: superior colliculus

A "burst of envelopes"

